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Effect of the loading system on the stress 
distribution in the fully embedded fibre 
pull-out test 
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Nanyang Avenue, Singapore 2263 

The effect of the loading system on the stress distribution in the fully embedded fibre pull-out test 
has been considered. Tests on a fully embedded fibre specimen resemble more closely conditions 
within a composite system. Both the top-restrained and fixed-bottom test configurations were 
considered. Effects of relative moduli and radii of the matrix and the fibre on stress distribution 
were considered. The influence of these on the maximum debond force and on the location of 
debonding crack in i t iat ionwith in the specimen were also determined. 

1. Introduction 
It is well known that the mechanical properties of 
a composite depend on its interracial properties. The 
interfacial properties are characterized by interfacial 
parameters such as the interfacial shear strength, zi, 
matrix shrinkage pressure on the fibre, Po, coefficient 
of friction, la, and the interfacial toughness, Gi. A num- 
ber of experimental techniques has been developed to 
determine these interracial parameters including the 
single-fibre pull-out, fibre fragmentation and fibre 
push-out (indentation) tests. The simple single-fibre 
pull-out test, which has the advantage that it can be 
directly applied to any fibre-matrix system of interest, 
is the subject of this work. 

Theoretical pull-out models have been developed 
on either a strength-based [-1-5] or a fracture-based 
approach [6-9]. Based on experiments from the glass 
fibre-polypropylene system, Yue and Cheung [10] 
showed that the applicability of fracture-based model 
to model pull-out systems was dependent on the speci- 
men geometry. In contrast, the applicability of the 
strength-based model considered was independent 
[10] of the geometry of the model pull-out specimen. 
It has also been shown theoretically [4, 11] that the 
maximum debonding force in a pull-out test is affected 
by the loading method. However, the above work 
consider specimens in which the fibers extend along 
the length of the matrix such that the broken fibre 
ends are exposed. 

A recent strength-based model [5] considers pull- 
out specimens in which the fibre is fully embedded 
within the matrix. The fixed-bottom loading condition 
(see Fig. 1) was considered. After the initial debonding 
crack initiation, progressive debonding was assumed 
to occur. The maximum debonding force was deter- 
mined by the total force to overcome frictional pull- 
out and to cause further crack debonding. This model 
could be used [12] to determine the interfacial para- 
meters for fibre composite systems. The model could 
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Figure 1 Type of specimen loading. (a) Fixed bottom, (b) restrained 
top. 

also predict [5] the point of interfacial crack initiation 
and account [12] for the two-way debonding ob- 
served in some pull-out specimens. However, the re- 
strained-top loading condition (see Fig. 1) has not 
been considered in the above model. 

The present work aimed to elucidate the effect of the 
loading method on the new [-5] model. In particular, 
the influence of loading method, relative fibre/matrix 
moduli, and specimen geometry on the point of inter- 
facial crack initiation, stress distribution and max- 
imum pull-out load were examined. 

2. Analysis 
There are two possible loading conditions in a pull- 
out test. These are depicted in Fig. 1 and are (a) the 
fixed bottom (FBC), and (b) the restrained top (RTC) 
conditions. They have also been referred to as the fully 
supported and freely supported conditions, respect- 
ively. In the FBC, the load is applied by pulling the 
free end of the fibre whilst gripping the matrix in 
a region away from the fibre=embedded end. The com- 
plete derivation of the model under such a loading 
condition is given elsewhere [5]. 
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The analysis for a similar model, which assumes 
a strength-based criterion for debonding crack initi- 
ation and takes into consideration the increasing con- 
tribution of the pull-out component to the debonding 
load as interracial debonding progresses, will now be 
considered for the RTC condition for a fully embed- 
ded specimen. 

2.1. S t resses  at the  in terface  
Consider the application of a load, Fp, to a specimen in 
the RTC. The specimen will deform elastically as 
shown in Fig. 2. The shear force on a fibre element dx 
is equal to 2rca%dx. The stress across the fibre end is 
assumed to be negligible. By assuming the shear force 
to be linearly distributed in the y direction such that 
the shear force at the circumference of the matrix 
block is zero, it can be shown (see Appendix I) that the 
expressions for the interracial shear stress distribution, 
z=, and the tensile stress on the matrix, ~m=, and fibre, 
O'fx, are 

"~x 

where 

debonding initiates when the interfacial shear stress, 
%, in Equation 1 reaches the interracial bond strength, 
q. Therefore, from Equation 1, the pull-out force, Fi, 
required to initiate debonding at x = 0 is 

2n a'q sinh ~L 
F~ = (4) 

-- ~(1 + q0cosh~L + r 

Once the debonding crack has initiated, the stresses at 
the interface will be redistributed such that the stress 
at the crack tip falls below ~i. Further crack propaga- 
tion will only occur if the stress at the crack tip reaches 
zi through an increase of the applied load. 

The pull-out force, Fp, required to ensure further 
progressive interracial crack debonding comprises two 
components, namely, the force F~y required to debond 
the remaining bonded length, lu, of fibre, and the force, 
Fr, required to overcome frictional pull-out due to 
matrix shrinkage onto the debonded length, ld, of the 
fibre. The force F~y required to propagate the crack 

Fp [ - ~ ( 1  + ~t)cosh~(L- x) + ot~coshc~x] 
2, a s nh 

(1) 

_ Fp I ( l + ~ ) s i n h ~ ( L - x ) + q t s i n h ~  1 
~mx n(b ~-- a 2) - sinh~L - ~ (2) 

cyf~ _ [ ( l + q t ) s i n h ~ ( L - x ) + q t s i n h ~ x ] 7 ; a ,  2Fp 1 + sinh~L - qt (3) 

O~ = {2Gm/{(b2- a2)IQb~a)ln(! ) - l l } I  Em(b2 ~f~ma2-- a2) + Efa2~l}l/2 

Em(b 2 -- a 2) 
4 =  Em(b 2 - a 2) + Era 2 

x is the distance from the emergent end, b and a are the 
radii of the matrix block and the fibre, respectively, 
Gin, Em are the shear and elastic modulus of matrix, 
and Ee is the elastic modulus of the fibre. 

2.2. P u l l - o u t  fo rce  for  in te r fac ia l  d e b o n d i n g  
In general, interfacial debonding in a specimen under 
the RTC occurs at the fibre emergent end (i.e. at 
x = 0 in Fig. 1). Utilizing a strength-based criterion, 

F~ 

Support 

F i b r e  

11 

,t 
/ ] 

Mat r i x  ~1 
I 

/ I 
/ I 

] 

dx  

~ mx d x  

I 
I 
I 
I 

i i  
: I 

i 
(1 + 8fx) d x  

Figure 2 Elastic displacement of the fibre-matrix interface for 
restrained-top loading. 

front is obtained by substituting L in Equation 4 with 
t, so that 

2n aq  sinh ~zlu 
Fuy = - ~(1 + q0cosh~/, + s 0  (5) 

For a rigid system, in which the Poisson's shrinkage 
effects can be neglected, the force, Ff, to overcome 
frictional pull-out in the debonded length, ld, is given 
(see Appendix II) by 

Ff = 2naPog(L - lu) (6) 

where Po is the shrinkage pressure and IX is the coeffi- 
cient of friction between fibre and matrix. The pull-out 
force, Fp, can readily be determined from Equations 
5 and 6 using the relationship 

Vp = F,y + F, (7) 

It has been shown I-5] that the debonding force, Fp, 
is a maximum when the remaining length of the 
fibre-matrix interface which has not debonded, lu, 
reaches a critical value, lc. Hence, Fpm, x (the maximum 
debonding force recorded in a force-displacement 
plot of a pull-out test) is obtained by substituting 
l, = lc in Equations 5, 6 and 7 

Fp = F,~, + 2naPop. (L  - 1~) (8) 
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2.3. Effect of Poisson's shrinkage 
When a ductile fibre or high aspect ratio fibre is used 
as a reinforcement component in a composite system, 
Poisson's effect will have a detectable influence on the 
debonding force. A high tensile stress on the fibre will 
result in a radial shrinkage in the fibre. This reduces 
the shrinkage pressure of the matrix on to the fibre 
and hence the frictional force, Ff, will be reduced. It 
can be shown (see Appendix II) that under these con- 
ditions, the pull-out force, Fp, is given by 

~a2p~ ( ~a2p~ 
_ __ le2~KIL to)/~ (9) 

Y p  K + F u y  K J 

where K = Emvf/Ef(1 + Vm), and vf and Vm are the 
Poisson's ratios of the fibre and matrix, respectively. 

3. Results and discussion 
Differences in the effect of the moduli ratio, R (where 
R = Em/Ef), and specimen dimensions on the stress 
distribution for both loading Conditions will now be 
considered. From these, the influence of the above 
factors on the point of debonding crack initiation 
would be determined. Next, the dependence of the 
maximum pull-out force, Fp . . . .  and the critical fibre 
embedded length, l~, on the loading condition would 
be elucidated. Finally, the influence of Poisson's effect 
and the interracial shear strength on the variation of 
debonding force, Fp . . . .  with the fibre embedded 
length for the two loading conditions would be out- 
lined. The pertinent equations for the fixed-bottom 
loading condition are available elsewhere [5]. 
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Figure 3 Variation of interfacial shear stress, "~:~, for (a) fixed bottom 
loading condition (FBC), and (b) restrained top reading condition 
(RTC). R = Em/Er: (0) 0.0Ot, (D) 0.005, (A) O.01, (V) 0.05, (~) O.1, 
(+)0.5. 

3.1. Effect of modulus ratio, R =  EjEf,  
on the stress d is t r ibut ion 

The effect of the modulus ratio, R, on the inteffacial 
shear stress distribution and on the tensile stress dis- 
tributions in the matrix and fibre for both loading 
conditions will now be considered. Plots of the stress 
distributions can be used to pin-point locations where 
failure initiation is likely to occur. To generate the 
plots in this section, the modulus of the matrix was 
varied while the fibre modulus, Ef, and the matrix and 
fibre diameters were fixed at 100 GPa, 2.5 and 0.1 mm, 
respectively. A pull-out force of 10 N was also as- 
sumed. 
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3. 1.1. Effect on interfacial debonding 
The plots of interfacial shear stress along the embed- 
ded length for the two loading conditions are as 
shown in Fig. 3. Debonding will initiate at the loca- 
tion where the interfacial shear stress is a maximum. It 
can be seen from Fig. 3 that the fibre emergent and 
embedded ends are points of high stress concentra- 
tion. A clearer representation of the stress levels at the 
emergent and embedded ends is given in Fig. 4. The 
interfacial shear stress at the emergent end increases 
with increasing moduli ratio, R. 

It can be seen from Fig. 4 that, for most values of R, 
the maximum interracial shear stress, v~, exists at the 
emergent end (x = 0) for both loading conditions. 
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Figure 4 Interfacial shear stress, ~x, at ( - - )  emergent and ( ) 
embedded end for (a) FBC, and (b) RTC, 

1903 



However, for the FBC, z~ is higher at the embedded 
end (x = L) for composite system with very low 
moduli ratio (see Fig. 4a). This implies that interfacial 
failure in most (thermoplastic, thermoset and carbon 
matrix-based) composite systems under both loading 
conditions is expected to initiate at the fibre emergent 
end. However, debonding in composite systems with 
low R(R < 0.002), such as elastomer-based model sys- 
tems, for the FBC will initiate at the fibre embedded 
end. 

An interesting feature in Fig. 3 is that two points of 
stress concentration exist (at x = 0, L)for  the RTC. In 
contrast, only one point of stress concentration exists 
for the FBC. In the RTC, the shear stresses at both 
ends act in opposite directions. The stress concentra- 
tion at the emergent end (x = 0) is double that at the 
embedded end (see Fig. 3b). Although the magnitude 
of the stress concentration at the two ends is different, 
it is apparent that two debonding cracks can initiate 
within a specimen for the RTC. This is because defects 
commonly exist in practical specimens so that "simul- 
taneous" debonding can occur at both ends of the 
fibre. Such simultaneous debonding at both ends has 
previously [13] been reported. 

It is also important to note that, for any given 
system, the interfacial stress level is higher for the RTC 
than for the FBC (see Fig. 3). For  a given applied load 
and R, the highest stress level in the former condition 
is about twice that for the latter condition. This can be 
attributed to the presence of compressive stresses 
within the matrix for the RTC which will be high- 
lighted in a later section. A higher stress concentration 
for the RTC has also been predicted [11] for a model 
developed from a fracture-based approach. 

3. 1.2. Effect on matrix yielding 
The stress distribution in the matrix, C~mx, is as shown 
in Fig. 5. For  the FBC (see Fig. 5a), ~m= is tensile in 
nature. In contrast, the restrained-top loading mode 
has the effect of inducing compressive stresses within 
the matrix (see Fig. 5b). The size of the compressive 
zone in the matrix decreases as R is decreased. The 
cross-over point at which the stress changes from 
being tensile to compressive is further from the emer- 
gent end for smaller R. It can be seen from Fig. 5b 
that for most thermoplastic/thermoset glass/Kevlar/  
carbon fibre composites (which typically have 
0.001 < R < 0.01), the compressive matrix zone can 
occupy between 50% and 85% of the fibre embedded 
length. 

It can be seen from Fig. 5 that ~m= over the embed- 
ded length decreases with decreasing matrix modulus 
(i.e. decreasing R). It is apparent from Fig. 5 that stress 
transfer from the matrix to the fibre in the model 
composite is ineffective (i.e. high O'mx ) for R > 0.05 and 
is good for R < 0.01. This implies that Stress transfer 
in composite systems with high R, such as carbon/  
carbon fibre composites, would be ineffective. 

The difference in matrix stress state for the two 
loading conditions does not result in any difference in 
the magnitude of maximum O'mx (see Fig. 5). However, 
the compressive stress state in the matrix for the RTC 

1904 

0.6 

0.5 

0.4 

~0 .3  

e E 

0.2 

0.1 

/ 

~ J  

~-~ee' 

0.0 r~ 
0 
(a) 

1 2 3 4 5 6 7 
Embedded length (mm) 

8 9 10 

0.6 
0.5fa 
0.41,~% o 
0.3 
0.2 

~ 0 . 1  
o . o  

b~-0.1 
-0.2 
-0.3 
-0.4 
-0.5 
-O.6 

(b) 

Figure 5 Variation of longitudinal stress of matrix, (~mx, for 
(a) FBC, and (b) RTC. For key, see Fig. 3. 

is responsible for the larger interfacial shear stress, 
rx (see Fig. 3), for this condition. For  the RTC, the 
maximum value of the compressive stress has the same 
magnitude as the maximum tensile stress. 

The implications of the variation of C~mx along the 
embedded length on matrix yielding will now be con- 
sidered. Failure initiation by matrix yielding is im- 
portant in composite systems where ~i > ~mx. Such 
a situation may sometimes exist where fibre surface 
treatments favour formation of a strong interface 
or interphase. For typical composite systems with 
0.001 < R < 0.01, ~mx. is maximum at the embedded 
end (x = 0) for the fixed-bottom specimen and at the 
emergent end (x = L) for the restrained-top specimen. 
Hence, the point of failure initiation is dependent on 
the loading method utilized. 

For less common composite systems with R > 0.05, 
under the FBC, failure may initiate at any point in the 
high stress region which occupy more than 60% of the 
fibre embedded region (see Fig. 5a). In contrast, under 
the RTC, failure initiation by matrix yielding can only 
occur at the fibre emergent end (see Fig. 5b). Failure 
would not initiate from the compressive stress region 
because the polymer matrix is stronger in compres- 
sion than in tension and O'mx(max ) [tension] = O'mx(max ) 
[compression]. 

3. 1.3. Effect on fibre fracture 
In practice, fibre fracture either at or just below the 
emergent surface would render the pull-out test void. 
Such fibre failure has been commonly observed [14] 



experimentally. The likelihood for such fibre fracture 
will now be considered. Plots of the variation of 
crrx along the embedded fibre are as shown in Fig. 6. 
Two points of stress concentration exist in the RTC 
but only one such point exists in the FBC. It can be 
seen that ofx is maximum at the fibre emergent end 
(x = 0) for both forms of loading. This magnitude of 
O'fx(max ) for the fixed-bottom (Fig. 6a) is five times 
higher than that of the restrained-top system (Fig. 6b). 
This indicates that the incidence of the fibre fracture at 
the emergent end of the pull-out specimen would be 
higher in the fixed-bottom loading condition. There- 
fore, in systems where the fibres are prone to fracture, 
the restrained-top loading condition is more likely to 
lead to a successful pull-out test. 

3.2. Effect of specimen geometry 
To elucidate the effect of specimen geometry on the 
ease and point of debonding initiation, the variation of 
interfacial shear stress levels at the embedded and 
emergent ends with geometry was determined for the 
composite systems in Table I. The glass fibre poly- 
propylene and glass fibre-rubber systems in Table I 
represent composite systems with medium (R = 0.016) 
and low (R < 0.001) moduli ratio, respectively. 

In the first instance, the embedded length and the 
diameter of the matrix block were kept constant at 10 
and 20 mm, respectively, while the fibre diameter was 
varied. The results are as shown in Fig. 7. It can be 
seen from Fig. 7b for the RTC that r= is higher at the 
emergent end for all fibre diameters. Hence, the point 
of debonding initiation is independent of fibre dia- 
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Figure 6 Variation of longitudinal stress of fibre, ~e~, for (a) FBC, 
and (b) RTC. For key, see Fig. 3. 

T A B L E  I Parameters of the composite system considered in the 
analysis 

System Em(GPa ) Ef(GPa) V m V f  

Glass f ibre-PP 1.4 60.0 0.35 0.22 
Glass fibre-rubber 0.002 60.0 0.5 0.22 
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Figure 7 Effect of fibre diameter on the interfacial shear stress, z~, at 
the ( - - - )  emergent and ( ) embedded end for (a) FBC, and 
(b) RTC. ( 0 )  pp/glass, ([5]) rubber/glass. 

meter for this loading condition. In contrast, for FBC 
(Fig. 7a), "cx at the embedded end i s higher when the 
fibre diameter is greater than 0.25 mm for R = 0.016. 
Thus, an emergent-embedded failure transition exists 
as the fibre diameter is increased. Moreover, rx at the 
embedded end is always higher when R < 0.001. 

Next, the embedded length and the diameter of the 
fibre were kept constant at 10 and 0.1 mm, whilst the 
diameter of the matrix block was varied. The depend- 
ence of zx on the matrix diameter is as shown in Fig. 8. 
For the RTC, the general characteristics in Fig. 8b are 
similar to that in Fig. 7b. However, Fig. 8a for the 
FBC has some interesting features. For R < 0.001, ~x 
at the embedded end is always higher. However, for 
R = 0.016, an embedded-emergent failure transition 
occurs as the matrix diameter is increased above 
0.75 mm (see Fig. 8a). The above results clearly indic- 
ate that the point or location of interfacial debonding 
is affected by the fibre and matrix diameter and R for 
the FBC. 

3.3. Pull-out force for interfacial debonding 
To determine the effect of the loading system on the 
debonding force, Fp, and the maximum debonding 

1905 



30 
27 
24 
21 

~18 
I X .  

~12 
9 

6 

3 
0 

(al 

m 

5 10 15 20 25 30 
Matrix diameter (mm) 

[ 

~-15 

"~-25 

-35 

-45 

-55 
(b) 

O ~ - / - o  ~ ~  

Matrix diameter (mm) 
D / ' D ~ I i i 

18 ~ _ _  24~ - 6 12 _ -~ . . . . .  30 

/ 
/ 

/ 

: 3 " /  _ ~ _  - - - o  . . . .  ( 

/ 
/ 

o ~ 

Figure 8 Effect of matrix diameter on the interracial shear stress, ~, 
at the (- ) emergent and ( ) embedded end for (a) FBC, and 
(b) RTC. (0) pp/glass, (D) rubber/glass. 

value as shown in Fig. 9. However, when the remain- 
ing length of the fibre interface which is bonded, l,, 
becomes less than a critical value, Ic, the force, Fuy, 
required to maintain the stress at the crack tip at zi 
falls rapidly (see Section 2.2). This is represented by the 
decrease in F,y at large displacements of the de- 
bonding crack front in Fig. 9. If Poisson's effect is 
neglected, the contribution of frictional force Ff to Fp 
in the system increases linearly with the debonded 
fibre length during the debonding process (see Fig. 9). 

The contribution of the frictional force component 
Ff to Fp is the same for both loading conditions. It can 
be seen from Fig. 9 that the debonding force F,y for 
the RTC is half that obtained for the FBC. This can be 
attributed to the higher interfacial shear stress concen- 
trations (see Section 3.1.1) for the former loading con- 
dition. The variation of Fp with the location of the 
advancing crack front is determined using Equation 
7 and is represented in Fig. 9. 

It can be seen from Fig. 9 that Fp for the FBC is 
higher than that for the RTC. In addition, Fp(max) for 
the former condition is higher than that for the latter 
condition. However, the difference in Fp(ma.) for the 
two conditions is small (see Fig. 9) despite the fact that 
the interfacial shear stress concentration in the RTC is 
double that for the FBC. The small difference ob- 
served is due to the fact that the frictional component 
Ff is dominant when Fp(m,~) is reached. 

force in a pull-out test, Fp . . . .  the variation of Fp, Fay 
and Ff during debonding crack propagation along 
the fibre embedded length will now be considered for 
the glass fibre/polypropylene system. In the analysis, 
the matrix and fibre diameters, the embedded length 
and the pull-out force were taken to be 2.5, 0.1 and 
10mm and 10 N, respectively. Equations 5-7 were 
utilized. 

The change in Fp, Vuy and Ff with advancing crack 
front during crack propagation is as shown in Fig. 9. 
The debonding crack is initiated when ~x is equal to q. 
As the crack advances, the pull-out force Fuy decreases 
resulting in a corresponding drop in Zx such that 
~ < q. For  the crack front to advance continuously, 
the shear stress at the crack tip must be kept at % This 
is achieved by maintaining Fuy at a constant critical 
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Figure 9 Variation of total pull-out force, Fp, frictional force, Ff and 
debonding force, F~ r, during the debonding process. (�9 Fuy, FBC; 
(D) F~, FBC and RTC; (V) Fd, FBC; (V) F,y, RTC; (O)Fd, RTC. 
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3.4. Critical f ibre e m b e d d e d  length  
The critical fibre embedded length, Ic (Section 2.2), can 
be obtained by differentiating Equation 8 or 9 with 
respect to the bonded length and equating dFp/dlu to 
zero. Utilizing the parameters in Table I, Ir for the 
polypropylene/glass fibre system for the FBC and 
RTC were found to be 1.44 and 0.83 mm, respectively. 
Thus, in general, lc for the RTC seem to be about half 
that for the FBC. The variation of lc with R is as 
shown in Fig. 10. Therefore, lo is dependent on the 
loading condition and on R. 

3.5. Effect of  Po isson 's  shr inkage 
Fig. 11 shows the theoretical curves of Fp versus L for 
both types of loading with and without Poisson's 
effect for the PP/glass fibre system. It can be seen from 

9H 

5~/ 

:r._ 1 
c3 O/ . . . . . . . . . . . .  - . - . - . - . - . - ~ - ~ - t  

0.00 0.04 0.08 0.12 0.16 0.20 
Modulus ratio, Em/E f 

Figure lO Variation of critical embedded length, lc, with modulus 
ratio, R = E~/Er. (�9 FBC, (A) RTC. 
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Figure 11 Effect of Poisson's shrinkage on the plot of Fpm,~ against 
the embedded length, L: ( - - - )  with and ( ) without Poisson's 
shrinkage; (�9 FBC, (~) RTC. 

Fig. l l  that the effect of Poisson's shrinkage in the 
fibre is to change the slope of the curve by lowering 
fp(max) at 1 > 1r For a given embedded fibre length, the 
magnitude of this effect is the same for both types of 
loading. 

4. C o n c l u s i o n  
It can be seen that the stress distributions for Zx, O'mx 
and cyfx along the fibre embedded length is dependent 
on the modulus ratio, R, the size of the fibre and 
matrix block, and the loading condition utilized in the 
pull-out test. This has important consequences on 
the ease and location of debonding crack initiation in 
the specimen. Fibre breakage occurs more readily in 
the fixed-bottom loading condition. For failure by 
matrix yielding, more possible points of failure initi- 
ation exist for the FBC. Interfacial failure initiates at 
a lower applied load in the restrained-top loading 
condition. The maximum pull-out force, Fp(max) is 
higher for the FBC. However, the difference in 
Fptm~) for the two loading conditions is not very large. 

A p p e n d i x  I 
Consider a restrained-top pull-out system as shown in 
Fig. 1 subjected to a load. The radius of the cylinder 
and the fibre is depicted in Fig. 2. Neglecting the stress 
across the fibre end, it can be shown from the displace- 
ment considerations that 

(i + gfx)dx q- Umx - -  (gmx @ dgmx ) + gmxdx = dx 

so that 

dUmx 
dx - gfx -]- 8mx (A1) 

The fibre-matrix interface is subjected to a force sys- 
tem as shown in the free body diagram (Fig. 2). 

For force equilibrium of the matrix 

(b 2 - a2)dt~mx 
2a dx (A2) 

and for the fibre 

a dcyfx 
"c~ = ~ dx (A3) 

At any cross-section of the system it can be shown that 

Fp = rca2cyf~ - n(b 2 - a")C~m~ (A4) 

The displacement, Um~, can be written as 

f '  ~mm d (A5) Um~ = Y 

where zr is the shear stress at a distance y from the 
centre of the fibre-matrix system shown in Fig. 2. 

For a free surface, the shear stress at the circumfer- 
ence is zero. Assuming that the shear force decreases 
linearly in the y-direction from Si at the interface to 
0 at the circumferential surface of the matrix. The 
shear force, Si, at the interface (r = a) is 

S i = 2rca'cxdx 
and at a distance y 

. / b  - 
z, = zxTt~-~) (A6) 

Substituting Equation A6 into A5 gives 

('bz~a/b -- y\ 

_ ~ a  r b ln(b~ ] 
am k ~  a k~ ) --  1 (A7) 

Differentiating Equations A2 and A7 with respect to 
x gives 

d'crnx-(b2-a2) d 2 G m x d x  2a dx (A8) 

and 

dgmx 
dx 

- L [(b - ~  In (!) -lld~xjdx 

Substituting Equation A8 into A9 

(A9) 

dUmx (b 2 - a2)[ - b , /'b~ 7d2cYm~ 

(A10) 

From the theory of elasticity, Equation A1 can be 
written as 

d Umx (Yfx O'mx 
- + - -  (All) 

dx Er Em 

Substituting Equation Al l  into Equation A10 gives 

d2(Ymx - d x 2  2Gin/l{ (b2 - a 2 ) I ( b ~ b  a ) l n ( ! )  - 1 1 }  

• L ef + Em J (A 12) 

From Equation A4 

Fp + re(b; - aZ)cYmx 
(Yfx = g a  2 

= ,_r p ] a2Lg + (b 2 -- a2)rYrnx (A13) 

Substituting this into Equation A12 gives 

1907 



d2umx 

d x  2 
- - 1  1 --2Gm/{ (b2 a2)[(~)In(!)l}{~I -FpE + (b2 - a2)(~mxl j- (ymx~ Em J 

---- 2Gm/{(5 2 - a')[(~)ln(~)- I ]}[Em(b'-a')+Era2 l~ma ` "rex 

+2GmFp/{( b2 -a2)[(~_ a)ln(: ) - I] "a2E,} 
Equation A14 is of the form 

where 

-- ACYmx + B 
d2o-mx 

A = 2Gmfl{(b 2 -.',L(A)In(~)- ']~VEm(b'jJL ~Emm a'-a 2) -J- Efo2] 

B = 2GmFp/{(b2- a2)[(~)In(:) - 1].a2Ef} 

d x  2 

The solution to Equation A14 is 

__ Fp V(1 + qOsinh ct(L - x) + ~ sinh(otx) 
O'mx ~( b2 -- a2)L sinh(~L) 

The stress distribution of the fibre can be obtained 
by substituting Equation A15 into Equation A13 

_ [ (1 + ~ ) s i n h c ~ ( L - x ) + s i n h ( ~ x )  1 cyfx Fp 1 +  - 4  
~ a  2 sinh(~L) 

Differentiating Equation A15 with respect to x and 
substituting this into Equation A3 gives 

dc~fXdx - ~aa 2 " FP [ - ~ ( 1  + qOc~ - x) - ~*c~176 

"cx - 2~aFP I -  ~ + qOc~176 - x) + 

(A14) 

(A15) 

(A16) 

(A17) 

(A18) 

Appendix II 
Pull-out against friction 
Consider a specimen in the restrained-top loading 
configuration shown in Fig. A 1. Assume that the fibre 
is rigid and the matrix is elastic. For equilibrium of 
forces on the fibre element of length dl (see Fig. A2), 

D 

q 

dl 

o; 

X 

b 

Figure A1 Partial debonding of fibre embedded specimen. 
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Figure A2 Elemental of length, dl, of the debonded region. 

within the debonded region of the fibre-matrix inter- 
face 

d~f 2zt 
- (a19) 

dl a 

where ~f is the frictional stress on the interface, cyf is 
the tensile stress of the fibre. The value of zf is depend- 
ent on the shrinkage pressure of the matrix Po and the 
interfacial coefficient of friction i.t, where ~f = laPo. 
Substituting this into Equation A19 

dc~f 2Pog 
= (A20) 

dl a 



The frictional force over the debonded region can be 
obtained by intergratifig Equation A20 over the de- 
bonded region. That  is 

F f  : r c a 2 p P o ( L -  ld) (A21) 

Effect of Poisson's shrinkage on the fibre 
In the case of a ductile fibre or fibre with high aspect 
ratio, Poisson's shrinkage is significant if the tensile 
stress of the fibre is high. Poisson's shrinkage reduces 
the shrinkage pressure on the fibre thus decreasing the 
interracial friction~ Because the tensile stress of the 
fibre varies along the embedded length, a similar vari- 
ation of Poisson's effect occurs. The radial shrinkage 
strain, e,, of the fibre is 

O'fVf 
~, - (A22) 

Ef 

The thick cylinder theory can be applied to deter- 
mine the drop in shrinkage pressure due to Poisson's 
shrinkage. Substituting the radial shrinkage strain of 
Equation A22 into thick cylinder theory gives a pres- 
sure drop of 

Emvf (Yf 
Pd - (A23) 

Ef(1 + Vm) 

Therefore, the frictional stress becomes 

I EmVf fir 1 
zf = Po Ef(1 + Vm) p 

-- (Po - K~f)p (A24) 

where K = E,~vf/Ef(1 + Vm). Substituting Equation 
A24 into A19 and rearranging 

do'f 2pK 2pPo 
- -  + ~f - (A25) 
dl a a 

The above is a first-order differential equation and its 
solution is 

e2"m/ar~f = P~ + C (A26) 
K 

The constant C can be evaluated from the boundary 
condition c~r = 0 at l = - (L - / u ) .  It can be shown 
for the case where the fibre has debonded a length, Id, 

pull-out force due to friction, Ff, is given by 

K a2 po 
Ff - ~ (1 -- e 2~K(L-lu//a) (A27) 

E f f e c t  of  f r ic t ion in t he  d e b o n d i n g  p r o c e s s  
During the debonding process, the embedded length is 
comprised of the debonded, ld, and the bonded regions 
(see Fig. A2). Poisson's shrinkage will only affect the 
debonded region. The tensile force, F=, can be ob- 
tained by multiplying Equation A26 by the cross- 
sectional area of the fibre so that 

Fx e2~KI/a - 2~a2p~ e 2~Kt/a + D (A28) 
K 

Using the boundary condition, G = Fuy at I = (L - lu) 
the constant D in Equation A28 can be evaluated and 
the pull-out force is given by 

1~a2p~ [ /z~-P~ e2~K(L - t")/" 
Fp - K + F,y 

(A29) 
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